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Experimental research on stress recovery in natural environments is limited, as is study of the effect of sounds of
nature. After inducing stress bymeans of a virtual stress test, we explored physiological recovery in two different
virtual natural environments (with and without exposure to sounds of nature) and in one control condition.
Cardiovascular data and saliva cortisol were collected. Repeated ANOVA measurements indicated parasympa-
thetic activation in the group subjected to sounds of nature in a virtual natural environment, suggesting
enhanced stress recovery may occur in such surroundings. The group that recovered in virtual nature without
sound and the control group displayed no particular autonomic activation or deactivation. The results demon-
strate a potential mechanistic link between nature, the sounds of nature, and stress recovery, and suggest the
potential importance of virtual reality as a tool in this research field.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Estimates and predictions of current and forthcoming global burden
of disease strongly stress the epidemics of non-communicable diseases,
such as cardiovascular and mental disorders [1]. Many of these condi-
tions are related to today's urbanised life-styles, where chronic stress
has emerged as a critical risk factor [2]. This underlines the need for
research concerned with stress and opportunities for stress recovery,
in order to improve public health [3].
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1.1. Green environments and stress recovery

Nature and green environments have in several studies been related
to stress relief [4,5] and recent research has indicated increased neuro-
physiological vulnerability to social stress in an urban compared to a
rural population [6].

Different theories have driven research into the correlation of nature
and health [7–10]. Many of these theories are rooted in the tradition of
the natural environment's psychological values, but they are also often
linked to theories of stress, mental fatigue, and restoration. Recovery in
green environments has been proposed as particularly effective due to
certain inherent qualities of nature, such as noise reduction and sponta-
neous induction of positive emotions [11–13]. Existing theories and
studies concernedwith health and the naturalworld reflect a connection
between the physiology of stress and the potential health benefits to be
derived from nature, although those pathways are not fully revealed.
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1.2. Nature, sounds, and virtual reality

Natural environments are dynamic settings thatmay be inconvenient
locales for using sophisticated research equipment. By simulating a
natural environment in a setting where complex research methods
could function under controlled conditions, we might be able to better
understandwhat components of nature are conducive to stress recovery.
At the same time,we could also study the physiologicalmechanisms that
operate when humans interact with nature.

However, the question arises whether a simulated natural environ-
ment would produce the same effects as a genuine one, and if so what
sensory input is necessary to provide this sense of realism? In the
past, the greatest emphasis has been placed on static modes of simula-
tion, such as photographs, sketches, or slides [14,15]. Several studies
support the suggestion that descriptive and evaluative responses, as
well as preferences, are comparable between simulations and authentic
presentations [16,17]. However, evidence concerning physiological and
behavioural responses to the environment is less clear. Compared to
static simulations, virtual environments (VEs) provide a more dynamic
alternative with greater ecological validity, that is, approximating the
real-life situation [18]. The experience of actually being in the place
depicted by the medium is also considered to be higher in VEs. The
latter phenomenon is referred to as presence in the virtual reality
(VR) research community [19], and is something that has an influence
on behavioural and physiological response [20]. Presence is believed
to be correlated to immersion [21,22], i.e., the extent towhich computer
displays are capable of delivering an inclusive, extensive, all-embracing
vivid illusion to the human senses. The higher the immersion of a VR
system, the better the restorative potential that can be expected from
the mediated natural environment [23].

Very little research has been done onwhether the quality of a virtual
simulation influences its restorative effect [20]. An earlier investigation
supported the idea that an increased level of realism can be achieved by
adding other modalities (e.g., auditory) than just visual [24].

Soundscape is a complex concept, relating to varied auditory input,
such as noise, music, and sounds of nature. Several studies have proven
the detrimental health effects of environmental noise, but some research
has also considered positive aspects of sound where natural sounds are
consistently perceived as pleasant and technological noise as mostly
unpleasant. Especially birdsong and sound of water seem to induce
positive reactions [25,26]. Such natural sounds have been used in stress-
ful situations like surgical procedures, and have demonstrated stress-
relieving effect via the autonomic nervous system. Several other exam-
ples of sounds of nature being used as stress-reducing components
exist [27–29].

A recent functional magnetic resonance imagining (fMRI) study
found that a visual context can modulate connectivity of the auditory
cortex with other regions of the brain that are implicated in the
generation of subjective states, especially tranquility [30]. This suggests
a relationship betweenobjectivemultimodal sensory input and individ-
ual mental states.
Table 1
Background-information for the participants in each group of 10 males.

Groups VR w/ sound VR, no sound Control

Age 28.2 (10.3), 21–56 26.7 (3.4), 22–32 28.1 (4.4), 24–38
BMIa 23.7 (3.1), 21–32 23.3 (1.5), 22–26 22.3 (2.0), 22–26
Self healthb 4.4 (0.5), 4–5 4.6 (0.5), 4–5 –

VR-expc 3.6 (1.6), 1–5 3.5 (1.6), 1–5 –

Nature-expd 4.1 (0.7), 3–5 4.1 (0.9), 3–5 –

Stresse 2 (1.1), 1–4 1.5 (0.7), 1–3 –

Note: Values are means (SD), (range).
a BMI = body mass index.
b Self health = self-rated health.
c VR-exp = VR experience.
d Nature-exp = nature experience.
e Stress = self-rated stress at arrival.
1.3. Stress tests

A variety of tests have been developed to provoke stress reactions
for research purposes. The Trier Social Stress Test (TSST) is a highly
standardised, validated, and widely used protocol for inducing social
stress in laboratory settings [31]. It has consistently been proven to
activate the hypothalamus–pituitary–adrenal (HPA) axis and the
sympatho–adrenal–medullary (SAM) system [32–34], along with
the corresponding endocrine and cardiovascular responses. It re-
quires the test participant to hold a speech and do an arithmetic
problem in front of an audience. The audience consists of three actors
who show no emotional response whatsoever to the test participant,
making the situation very stressful.
1.4. Objectives

In this study we used a recently developed virtual form of TSST to
induce acute stress [35,36], and explored autonomic and endocrine
stress and recovery responses together with subjective ratings of
stress Recovery was studied in three different conditions: a virtual
forest including congruent sounds; the same virtual forest with no
sounds; and a control condition with no virtual forest or sounds.

Autonomic and endocrine stress reactivity was assessed by heart
rate, T-wave amplitude, heart rate variability parameters, and saliva
cortisol, together with subjective ratings of stress [37–40].

We hypothesised that stress recovery after a virtual stress provo-
cation could also be facilitated in a virtual green environment, and
that stress recovery would be further facilitated by adding sounds of
nature to the virtual green environment. We supposed this would
be partly due to the effect of such sounds themselves [27] and partly
to the resulting increased sense of reality in the virtual environment.
We decided to use sounds of birdsong and water, since this had pre-
viously been related to feelings of relaxation and those sounds were
also connected to the virtual green environment we used — a
forest-like setting with a water stream.
2. Material and methods

2.1. Participants

Test participants were recruited through direct contact (either by
asking fellows directly or by getting in contact through mail or phone
after announcements about the planned study at the workplaces)
with students and colleagues of the researchers' institutions. Potential
participants were asked to complete a questionnaire covering general
self-rated health (“How are you”) and hearing impairments. In case of
good health and no hearing impairment the person was included in
the study. Thirty healthy Swedish males with a mean age of 27.7
(SD = 6.7) were included. We also collected background data on
former experience of 3D VR-experience (“How much experience do
you have of virtual 3D-environments?”) nature-experience (“How
much experience do you have of natural environments?”) and
self-rated stress on arrival to the laboratory (“Do you feel stressed?”).
The replies for VR- and nature-experience were assessed in Likert
scale format with the alternatives from 1 to 5: “none/not at all”, “little”,
“some”, “much”, or “very much”. For general health the replies were
arranged from 1 to 5 as “very bad”, “bad”, “fair”, “good” or “very
good”, in accordance with recommendations from WHO [41] and the
EURO-REVES 2 group [42]. Information on general health, stress, VR-
or nature-experience was not available for the control group. Basic
data are provided in Table 1.

Because gender differences in cortisol responses to psychosocial
stress have been recorded [43] and the specific phase in the menstru-
al cycle may affect the magnitude of the salivary cortisol response to
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psychosocial stressors [44], we chose only male participants in this
small sample pilot study to decrease variance.

2.2. Virtual environments

The study took place in the afternoon (between 1 pm and 3 pm) in
the virtual reality laboratory of Lund University. The virtual environ-
ment was presented using a CAVE™ system with three rear-projected
walls (4 m × 3 m) and a floor projection (EON Development Inc.).
Passive stereoscopy was used to achieve three-dimensional vision.
The system also included an InterSense head tracking system that
creates a motion parallax effect to further increase the realism of the
VR simulation. For reproducing the sounds of nature (twittering birds
and a babbling brook) a 5.1 surround sound systemwas used. A realistic
mixture of birdsongs was used and the levels of bird sounds as well as
the variations in the murmur of water were adequately adapted to
where in the virtual environment the test participant (TP) was located.

2.2.1. Virtual TSST
The VR version of TSST is designed to resemble the traditional

TSST as closely as possible. It uses two virtual rooms: a waiting
room including a table, three pictures on the walls, two chairs and a
small table to the right, a couch to the left, and a door on the opposite
wall — and behind the door a room where the evaluating committee
was seated. Three virtual persons constituting the committee, a
middle-aged man placed in the middle, a young woman to the left,
and a young man to the right, sit behind a table facing the TP (see
Fig. 1). They expressed no emotions or social feedback to the TP and
expressed a neutral face.

Comments and instructions from the committee were given by
pre-recorded voices, following standard TSST protocol [31]. The com-
ments were activated by one of the test leaders with a remote key-
board invisible to the TP and for example if the participant had a
break in his presentation, the middle-aged man told him that he
had time left, or “please continue, I will tell you when your time is
up”. The man did not move his lips, but nodded his head slightly in
synchrony with the comments. To enhance the feeling of realism,
the committee members made subtle movements, such as shifting
their heads or feet.
Fig. 1. Photo of the vir
2.2.2. Virtual nature
The virtual natural environment consisted of trees in a forest

surrounding a path leading to a stream of water, reminiscent of a
natural setting in Scandinavia (Fig. 2). First the TP was still 5 min,
then the camera view of the VR simulation slowly moved down to
the stream of water to simulate a short walk that lasted for another
5 min. Next the TP was brought back to the starting point. After a
total of 15 min in the virtual nature environment the VR portion of
the experience was concluded and the TP was provided with some
magazines to lessen the risk that feelings of boredomwould interfere
with actual responses to the experimental set-up. Nonetheless the
physiological response to the initial recovery phase will continue ap-
proximately another 30 min, why the recordings continued until a
total of 40 min had elapsed after the stress provocation.
2.3. Procedure

The participants were told not to ingest food, caffeine, or tobacco dur-
ing 2 h before the experiment. Upon arrival to the lab, the TP was placed
in a comfortable chair and asked tofill in forms covering backgrounddata
and informed consent. This included the state scale of the Spielberger
state and trait anxiety inventory (STAI-S) [45] in order to assess subjec-
tive stress before the stress induction. Then the physiological recording
equipment, consisting of an electrocardiogram (ECG, lead II) and a strain
gauge for breathing registration, was attached to the TP. Hewas told that
the experiment would last for approximately one and a half hours, and
that he was going to perform two tasks in a VE. The experiment was
then carried out for all groups according to the following sequence:

1. Baseline: The TP entered the virtual waiting room and a 5 min
baseline ECG was recorded.

2. The TP was then virtually let into the other virtual room, facing the
committee. The visual transition from one room to another was
made through virtual simulation, where the change of setting was
following the environment both spatially and temporally, although
the TP was actually sitting still. These transfer procedures were
standardised for all participants. He was told that, after some prepa-
ration, hewas going to give a presentation in front of the committee,
pretending that he was applying for a specific job. He was also told
tual reality TSST.



Fig. 2. Photo of the virtual reality nature used in the study.
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that, after the presentation, the committee would give him a second
task to perform.

3. PREP: The TPwas virtually let back to thewaiting room to prepare the
speech for 5 min. He was permitted to take notes during the prepara-
tion, but was not allowed to use them during the presentation.

4. SPEECH: The TP was again virtually let into the other room and
gave his presentation in front of the committee (5 min).

5. MATH: The TP performed the second task, which consisted of
counting backwards from 1687 in steps of 13 (5 min).

6. Recovery (Rec): The TPwas virtually let into the virtualwaiting room
to recover. Up to this point all participants had went through the
same experimental conditions. Each participant was now randomly
assigned to one of three recovery settings (n = 10 in each group):
Forest S+, recovery in a virtual forest with congruent sounds
(songs and twittering of birds, and a slight murmuring of water);
Forest S−, recovery in the virtual forest without sounds; and Control,
that is, recovery in the lab with no forest or forest congruent sounds.
During the first 5 min of recovery, that is, after the math task, the TP
completed a short scale regarding the sense of presence during the
virtual TSST (results will be presented elsewhere). Meanwhile one of
the test leaders turned on the green virtual environment for TP:s in
the Forest+, and Forest− group. Thus, the three groups begun to
recover in respective condition approximately at the same time after
the stress induction. The total recovery period lasted for 40 min.

After the recovery period was completed a modified version of the
state scale (STAI-S) was filled in, estimating state anxiety during
stress provocation and in the virtual forest. Then the purpose of the
experiment was explained and the TP had the opportunity to ask
questions about the event. The TP received two cinema checks.

2.4. Data collection and reduction

2.4.1. Cortisol
Saliva cortisol was collected in sampling tubes with cotton

swabs (Salivette®; Sarstedt, Leicester, UK) after Baseline, PREP, TSST
(SPEECH + MATH), Recovery +10 min, +20 min, +30 min, and
+40 min, for a total of seven samples. The saliva cortisol was assessed
with a competitive radioimmunoassy (RIA) designed for quantitative in
vitro measurement of cortisol in saliva (Spectria Cortisol Coated Tube
RIA, Orion Diagnostica, Espoo, Finland) following the manufacturer's
protocol. A detailed description of the analytical method is provided in
Österberg et al. [46]. The data was log-transformed (ln) to approach a
normal distribution.

2.4.2. Heart rate
ECG and respirationwere recorded at 1 kHz using theML866 Power

Lab data acquisition system and analysed using its software Chart5
(ADInstruments Pty, Bella Vista, Australia) and MATLAB (MathWorks,
Natick,MA). ECGwas assessed using disposable electrodes (Lead II Eint-
hoven) and respiration using a strain gauge over the chest. Mean HR
was analysed for 5 min in each condition: Baseline, PREP, SPEECH,
MATH, and during the four following recovery periods, for a total of 8
conditions. The same was done in the case of T-wave amplitude
(TWA) and HRV, see below.

2.4.3. T-wave amplitude
TWA is suggested to be related to β-adrenergic sympathetic influ-

ences on myocardial performance [39]. Although its reliability has been
questioned by some researchers [47] it has been found to respond in
conformity with other β-adrenergic indicators such as pre-ejection
period (PEP) and R-to-pulse interval (RPI) to stressful tasks [48] and
then appeared related to sympathetic activity. TWA was computed as
the difference in mV between the maximum magnitude in the 100–300
milliseconds (ms) window after the R-wave peak and the mean of the
isoelectric period (50–40 ms) before the R-wave peak, that is, between
the P- and Q-wave [39] for each heartbeat and averaged over 5 min.

2.4.4. Heart rate variability
R–R intervals were transformed to a tachogram (ms) and linearly

interpolated at 4 Hz. The data were further linearly detrended and
high-pass filtered (second order Butterworth filter, 0.02 Hz) to elimi-
nate very low fluctuations. For each 5-min sequence, heart rate variabil-
ity (HRV) power spectra were calculated for 17 segments of 128 points
(32 s) with a 50% overlap, by means of fast Fourier transform (1024
points) following the application of multiple peak matched windows.
The Peak Matched Multiple Windows (PM MW) method optimizes
the mean square error of a spectrum estimate when the spectrum can
be expected to include peaks [49,50]. This method has been shown to
give reliable results for the HRV spectrum and has previously been
used in psychophysiological research [40–51].

The integral of the HRV power spectrum generally is studied in
two frequency bands including a high frequency (HF) component
(0.12–0.4 Hz) and a low frequency (LF) component (0.05–0.12 Hz).

image of Fig.�2


Table 2
Summary of cortisol and cardiovascular estimates as a function of the different conditions of TSST.

Parameter Group Condition

Baseline Preparation Speech Math Rec 10 Rec 20 Rec 30 Rec 40

Mean (SE) Mean (SE) Mean (SE) Mean (SE) Mean (SE) Mean (SE) Mean (SE) Mean (SE)

Cort (nmol/L)d Forest sound+a 6.31 (1.41) 6.18 (1.23) – – 7.03 (1.39) 7.08 (1.32) 7.45 (1.01) 5.76 (.64) 4.81 (.46)
Forest sound−b 4.10 (.80) 4.32 (.83) – – 6.77 (.98) 8.66 (1.34) 7.22 (1.00) 5.50 (.69) 4.71 (.57)
Controlc 4.67 (.69) 4.55 (.71) – – 6.62 (1.12) 8.09 (1.73) 6.78 (1.31) 5.28 (.84) 4.43 (.63)

Cort ln Forest sound+ 1.67 (.18) 1.67 (.18) – – 1.84 (.15) 1.96 (.14) 1.93 (.13) 1.69 (.12) 1.53 (.10)
Forest sound− 1.22 (.21) 1.29 (.20) – – 1.78 (.19) 2.00 (.20) 1.85 (.19) 1.63 (.14) 1.48 (.13)
Control 1.45 (.13) 1.42 (.14) – – 1.74 (.19) 1.85 (.24) 1.71 (.22) 1.53 (.18) 1.38 (.16)

HR (BPM)e Forest sound+ 63.1 (2.8) 72.0 (3.6) 73.5 (3.6) 71.3 (3.0) 61.3 (2.3) 61.3 (2.4) 59.2 (2.2) 58.9 (2.4)
Forest sound− 67.5 (2.4) 77.6 (3.1) 80.0 (2.4) 79.3 (2.2) 66.6 (2.6) 66.0 (2.5) 65.4 (2.0) 66.7 (2.3)
Control 65.7 (3.1) 77.7 (4.9) 78.2 (5.3) 80.4 (5.1) 65.6 (3.3) 64.8 (2.9) 64.2 (2.7) 63.2 (2.7)

TWA (mV)f Forest sound+ .257 (.027) .235 (.026) .223 (.027) .224 (.026) .259 (.030) .265 (.029) .277 (.033) .266 (.032)
Forest sound− .236 (.019) .212 (.020) .191 (.016) .190 (.018) .234 (.022) .242 (.023) .243 (.023) .240 (.023)
Control .261 (.029) .223 (.027) .205 (.029) .201 (.021) .253 (.027) .268 (.028) .268 (.026) .259 (.025)

HF (ms2)g Forest sound+ 7.49 (1.57) 12.14 (4.29) 11.50 (3.11) 12.19 (2.98) 11.93 (2.37) 11.49 (2.46) 17.67 (4.16) 19.07 (5.16)
Forest sound− 15.98 (4.65) 9.85 (3.12) 11.12 (4.48) 12.41 (3.77) 14.16 (5.22) 11.26 (3.31) 8.85 (2.13) 8.80 (2.56)
Control 10.09 (2.27) 7.10 (1.69) 10.28 (2.58) 9.98 (2.63) 10.23 (1.99) 10.91 (2.93) 10.35 (2.15) 10.08 (2.07)

HF lnj Forest sound+ 8.62 (.22) 8.74 (.33) 8.80 (.33) 8.99 (.26) 9.05 (.22) 9.00 (.22) 9.41 (.23) 9.48 (.25)
Forest sound− 9.11 (.34) 8.65 (.25) 8.76 (.25) 8.95 (.24) 8.96 (.31) 8.73 (.35) 8.68 (.27) 8.66 (.25)
Control 8.87 (.23) 8.51 (.22) 8.87 (.29) 8.80 (.26) 8.86 (.26) 8.87 (.25) 8.89 (.23) 8.89 (.23)

HF nuk Forest sound+ .326 (.031) .240 (.032) .218 (.022) .218 (.019) .255 (.022) .254 (.029) .233 (.026) .245 (.023)
Forest sound− .313 (.049) .246 (.035) .210 (.023) .226 (.026) .266 (.040) .241 (.033) .219 (.024) .203 (.027)
Control .269 (.021) .227 (.019) .230 (.026) .201 (.023) .203 (.021) .216 (.021) .212 (.027) .202 (.023)

LFh (ms2) Forest sound+ 18.85 (2.84) 33.68 (5.87) 37.77 (6.41) 42.12 (7.11) 39.86 (6.21) 38.16 (4.72) 61.84 (9.17) 64.93 (10.14)
Forest sound− 44.02 (18.75) 27.12 (4.06) 35.57 (6.37) 39.28 (8.76) 37.88 (7.07) 35.47 (6.89) 34.74 (6.26) 37.93 (5.57)
Control 30.23 (4.98) 25.97 (3.99) 36.31 (6.76) 41.36 (8.23) 45.45 (7.14) 50.82 (11.79) 49.33 (10.44) 49.89 (10.84)

LF ln Forest sound+ 9.73 (.17) 10.28 (.18) 10.35 (.23) 10.52 (.17) 10.48 (.17) 10.48 (.12) 10.94 (.14) 10.97 (.16)
Forest sound− 10.28 (.26) 10.11 (.15) 10.36 (.15) 10.43 (.17) 10.34 (.24) 10.29 (.22) 10.28 (.21) 10.42 (.18)
Control 10.19 (.17) 10.05 (.16) 10.32 (.21) 10.46 (.19) 10.56 (.21) 10.58 (.24) 10.58 (.24) 10.57 (.25)

LF nu Forest sound+ .674 (.031) .760 (.032) .782 (.022) .782 (.019) .746 (.022) .746 (.029) .767 (.026) .756 (.023)
Forest sound− .687 (.049) .754 (.035) .790 (.023) .774 (.026) .734 (.040) .759 (.033) .781 (.024) .797 (.027)
Control .731 (.021) .773 (.019) .770 (.026) .780 (.023) .797 (.021) .785 (.021) .788 (.027) .798 (.032)

LF/HF Forest sound+ 2.94 (.51) 4.37 (.65) 4.87 (.68) 4.69 (.63) 4.15 (.60) 4.29 (.67) 4.72 (.78) 4.57 (.55)
Forest sound− 3.58 (.72) 4.18 (.63) 4.73 (.47) 4.36 (.53) 4.17 (.72) 4.63 (.78) 4.71 (.65) 5.64 (.98)
Control 3.39 (.31) 4.26 (.45) 4.14 (.36) 5.06 (.46) 5.30 (.47) 4.94 (.57) 5.15 (.61) 5.26 (.62)

TOTi (ms2) Forest sound+ 26.34 (4.01) 45.82 (9.76) 49.26 (9.22) 54.31 (9.90) 51.80 (8.27) 49.65 (6.79) 79.50 (12.62) 84.00 (14.53)
Forest sound− 60.00 (21.39) 36.97 (6.29) 46.68 (10.66) 51.70 (12.06) 52.04 (11.24) 46.74 (9.66) 43.59 (7.96) 46.74 (7.73)
Control 40.32 (7.10) 33.06 (5.42) 46.59 (8.63) 51.34 (9.83) 55.68 (8.95) 61.74 (13.97) 59.69 (11.83) 59.97 (12.66)

TOT ln Forest sound+ 10.06 (.17) 10.53 (.21) 10.59 (.25) 10.75 (.19) 10.74 (.17) 10.73 (.13) 11.18 (.15) 11.21 (.17)
Forest sound− 10.63 (.27) 10.40 (.16) 10.59 (.18) 10.68 (.18) 10.63 (.24) 10.53 (.23) 10.50 (.22) 10.61 (.18)
Control 10.46 (.18) 10.28 (.17) 10.56 (.22) 10.67 (.20) 10.75 (.22) 10.78 (.24) 10.78 (.23) 10.77 (.24)

Note: Cardiovascular measures were estimated during the last 5 min in each condition. Saliva cortisol was collected after each condition except from speech, that is, according to the approach generally used in TSST research. Rec 10–40 =
recovery during the first 10, 20, 30, and 40 min after stress induction.

a Forest sound+ = the group that during 15 min after stress were exposed to a virtual walk in a forest including nature sounds.
b Forest sound− = the group that were exposed virtual walk in the forest but with no sound.
c Control = the group that recovered in an empty room without any nature stimuli.
d Cort = saliva cortisol.
e HR = heart rate.
f TWA = T-wave amplitude.
g HF = high frequency HRV power.
h LF = low frequency HRV power.
i TOT = total HRV power.
j ln = natural logarithm.
k nu = normalised units.
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Fig. 3. Cortisol, HR, and TWA as a function of experimental condition. Values are means
(±1 SE). Filled squares represent the group that during 15 min after stress were exposed
to a virtual walk in a forest including nature sounds; empty squares represent the group
that were exposed to a virtual walk in the forest but with no sound; and the group that re-
covered in an empty room without any nature stimuli is represented by empty circles.
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HF oscillation is related to the respiratory cycle and is suggested to re-
flect parasympathetic cardiac control [40–53]. The interpretation of
the LF component is more controversial and has been suggested to re-
flect predominately sympathetic activity, or a mixture of sympathetic
and parasympathetic influences [52–54].

The absolute power of LF, HF and the total HRV power (TOT, LF + HF)
are reported in Table 2. In the statistical analyses log-transformed (ln)
data to approach normal distributions were used. Further, normalised
power of the LF component [LF / (LF + HF)] and the HF component
[HF / (LF + HF)] were analysed, together with the LF/HF ratio proposed
to be an index of sympathovagal balance by some researcher, but
criticised by others [40].

The respiration measures were used to ensure that the respira-
tory rate was within the HF range.

2.4.5. Statistics
Repeated measures ANOVA were used in all analyses for the

physiological measures (p b 0.05), with experimental CONDITION as
within-subject repeated factor and GROUP as the between-subject
factor. Significant effects were reported with Greenhouse–Geisser
adjustments (ε) to correct for violation of the assumption of sphericity,
togetherwith unadjusted degrees of freedom, adjusted p-values, and η2.

To examine specifically the recovery effect for HR, TWA, and HRV,
the last stress condition, themath task, was subtracted from the four re-
covery conditions which were used as repeated factors in a similar
ANOVA as above. Due to the time lag for cortisol reactivity which
peaks about 10 min after TSST, the first recovery condition after TSST
were subtracted from the three following conditions. Thus, there were
three repeated conditions concerning the recovery effect for cortisol.

The study was performed in accordance with the Declaration
of Helsinki and was approved by the regional ethical review
board in Lund (2010/398).

3. Results

No significant differences (independent samples Mann Whitney
test) were found for the participants at arrival to the laboratory in
terms of former experiences, or perception of stress and general
health (see Table 1).

3.1. Stress induction (Table 2)

3.1.1. Cortisol ln
The repeated measure ANOVA showed a significant main effect of

CONDITION: F(6.162) = 12.95, p b .001, η2 = .32, ε = .27, together
with a quadratic [F(1.27) = 32.88, p b .001, η2 = .55], and a cubic
contrast [F(1.27) = 8.61, p = .007, η2 = .24], indicating that corti-
sol increased during stress induction and then returned to baseline
(Fig. 3a).

3.1.2. Heart rate
HR varied significantly as a function of CONDITION [F(7.189) =

61.91, p b .0001, η2 = 70, ε = .32]. HR increased during PREP, SPEECH,
and MATH, compared to baseline, and then recovered and stabilised
during the four succeeding recovery conditions: Flinear(1.27) = 83.26,
p b .001, η2 = .76; Fquadratic(1.27) = 66.91, p b .001, η2 = .71; and
Fcubic(1.27) = 85.75, p b .001, η2 = .76] (see Fig. 3b).

3.1.3. T-wave amplitude
In concert with HR, a main effect of CONDITION showed that

TWA decreased during the three stress conditions, indicating
increased sympathetic activity, and then recovered and stabilised:
F(7.189) = 34.37, p b .001, η2 = .56, ε = .35; Flinear(1.27) =
32.78, p = .001, η2 = .55; Fquadratic(1.27) = 57.03, p b .001, η2 =
.68; and Fcubic(1.27) = 45.98, p b .001, η2 = .63 (see Fig. 3c).
3.1.4. HRV parameters

3.1.4.1. HF ln. The result showed that there was a significant
GROUP*CONDITION interaction: F(14.189) = 2.43, p = .0025,
η2 = .15, together with a linear contrast: Flinear(2.27) = 14.81,
p b .001, η2 = .52 (see Fig. 4a). Compared to the control group
and the Forrest S− group, the Forest S+ group responded with
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increased HF magnitude across conditions, most notably at the two
last recovery periods. Bonferroni pairwise post hoc test did not re-
veal any significant results between the groups.

3.1.4.2. HF normalised units (nu). A main effect of CONDITION was
found for HF nu: F(14.189) = 10.04, p b .001, η2 = .27, ε = .60;
Flinear(1.27) = 15.41, p = .001, η2 = .36; Fquadratic(1.27) =16.90,
p b .001, η2 = .39; and Fcubic(1.27) = 13.81, p = .001, η2 = .34.
HF nu decreased from Baseline to MATH and then stabilised,
although with a small increase during the first and second recov-
ery period (Rec 10 resp. Rec 20) (see Fig. 4b).

3.1.4.3. LF ln. Also for LF ln there was a main effect of condition:
F(7.189) = 6.82, p b .001, η2 = .20, ε = .71; Flinear(1.27) = 33.05,
p b .001, η2 = .55, indicating an overall increase across conditions.
However, there was also a CONDITION*GROUP interaction:
F(14.189) = 2.18, p = .023, η2 = .14; Flinear(2.27) = 7.31, p = .003,
η2 = .35, showing that the linear increase was more pronounced in



Table 3
Summary of cortisol and cardiovascular estimates during recovery. The parameter estimates are based on subtraction scores with the last stress condition, the math task, as the
subtrahend. For the cortisol scores the first recovery condition represents the subtrahend because the cortisol concentration peaks after about 10 min after stress induction.

Condition

Parameter Group Rec 10 Rec 20 Rec 30 Rec 40

Mean (SE) Mean (SE) Mean (SE) Mean (SE)

Δ Cort (nmol) Forest sound+ – – − .35 (.57) −2.04 (.91) −2.99 (1.08)
Forest sound− – – −1.44 (.68) −3.16 (.91) −3.95 (.95)
Control – – −1.31 (.46) −2.81 (.97) −3.66 (1.18)

Δ Cort ln Forest sound+ – – − .026 (.055) − .267 (.078) − .431 (.094)
Forest sound− – – − .155 (.075) − .378 (.112) − .527 (.120)
Control – – − .138 (.040) − .322 (.072) − .467 (.103)

Δ HR (BPM) Forest sound+ −10.10 (1.98) −10.07 (2.40) −12.17 (1.57) −12.47 (1.79)
Forest sound− −12.68 (2.50) −13.35 (2.36) −13.92 (2.29) −12.66 (2.56)
Control −14.79 (3.37) −15.60 (3.64) −16.25 (3.82) −17.28 (4.06)

Δ TWA Forest sound+ .034 (.010) .041 (.009) .052 (.013) .042 (.013)
Forest sound− .045 (.009) .052 (.010) .053 (.011) .051 (.010)
Control .052 (.014) .067 (.018) .067 (.014) .058 (.015)

Δ HF (ms2) Forest sound+ − .25 (1.39) − .70 (1.85) 5.48 (2.15) 6.88 (2.68)
Forest sound− 1.75 (6.11) −1.15 (3.76) −3.56 (3.04) −3.61 (2.89)
Control .25 (1.77) .94 (1.52) .38 (1.30) .10 (1.98)

Δ HF ln Forest sound+ .053 (.099) .010 (.179) .421 (.123) .483 (.147)
Forest sound− .007 (.330) − .223 (.295) − .272 (.241) − .289 (.195)
Control .054 (.181) .072 (.169) .093 (.163) .076 (.210)

Δ HF nu Forest sound+ .037 (.021) .036 (.035) .015 (.023) .027 (.018)
Forest sound− .040 (.027) .015 (.025) − .007 (.019) − .023 (.021)
Control .002 (.013) .015 (.016) .011 (.019) .001 (.021)

Δ LF (ms2) Forest sound+ −2.25 (5.43) −3.96 (5.67) 19.71 (8.70) 22.81 (7.44)
Forest sound− − .40 (11.42) −3.81 (11.39) −4.55 (11.04) −1.35 (9.40)
Control 4.09 (8.10) 9.46 (7.77) 7.96 (6.24) 8.53 (10.94)

Δ LF ln Forest sound+ − .041 (.149) − .035 (.153) .422 (.183) .454 (.139)
Forest sound− − .096 (.312) − .144 (.270) − .153 (.270) − .011 (.217)
Control .101 (.170) .119 (.180) .115 (.138) .113 (.213)

Δ LF nu Forest sound+ − .037 (.021) − .036 (.035) − .015 (.023) − .027 (.018)
Forest sound− − .040 (.027) − .015 (.025) .007 (.019) .023 (.021)
Control − .002 (.013) − .015 (.016) − .011 (.019) − .001 (.021)

Δ LF/HF Forest sound+ − .537 (.560) − .403 (.814) .032 (.526) − .118 (.478)
Forest sound− − .185 (.531) .278 (.673) .350 (.592) 1.289 (.885)
Control .234 (.486) − .121 (.447) .089 (.501) .201 (.585)

Δ TOT (ms2) Forest sound+ −2.51 (6.23) −4.66 (6.57) 25.20 (9.48) 29.69 (8.93)
Forest sound− .35 (16.95) −4.96 (14.78) −8.11 (13.88) −4.96 (12.07)
Control 4.33 (9.25) 10.39 (9.22) 8.34 (7.26) 8.63 (12.49)

Δ TOT ln Forest sound+ − .014 (.133) − .017 (.136) .431 (.167) .456 (.132)
Forest sound− − .056 (.317) − .152 (.266) − .189 (.260) − .070 (.206)
Control .080 (.165) .104 (.172) .108 (.130) .094 (.203)

Note. See Table 2 for abbreviation definitions.
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Forest+ group compared to the others (see Fig. 4c). Bonferroni
pairwise post hoc test did not reveal any significant results between
the groups.

3.1.4.4. LF nu. The results show a significant main effect of CONDITION:
F(7.189) = 10.04, p b .001, η2 = .27, ε = .60; Flinear(1.27) =
15.41, p = .001, η2 = .36; Fquadratic(1.27) = 16.90, p b .001, η2 = .39,
Fcubic(1.27) = 13.81, p = .001 η2 = .034 (see Fig. 4d). LF nu increased
from Baseline to MATH and the stabilised but with a small decrease
at the first and second recovery period.

3.1.4.5. LF/HF. A main effect of CONDITION was found for LF/HF:
F(7.189) = 6.51, p b .001, η2 = .19, ε = .66; Flinear(1.27) =18.49,
p b .001, η2 = .41; Fquadratic(1.27) = 4.25, p = .049, η2 = .14;
and Fcubic(1.27) = 9.21, p = .005, η2 = .25. LF/HF increased
during TSST and kept that level during recovery (see Fig. 4e).

3.1.4.6. TOT ln. Finally a main effect of CONDITION also was found for
TOT ln: F(7.189) = 5.30, p b 001, η2 = .16, ε = .69, together with a
linear contrast F(1.27) = 28.77, p b .001, η2 = .69. The results show
also a significant CONDITION*GROUP inter action effect: F(14.189) =
2.38, p = .014, η2 = .15; Flinear(2.27) = 9.72, p = .001, η2 = .42. As
shown in Fig. 4f, for the Forest S+ group the total HRV power increased
across the conditions, but was comparatively rather stable across the
conditions for the other two groups. Bonferroni pairwise post hoc test
did not reveal any significant results.

3.2. Recovery from stress (Table 3)

3.2.1. Cortisol ln
The results showed a main effect of CONDITION only: F(2.54) =

53.22, p b .001, η2 = .66, ε = .71; together with a linear contrast,
Flinear(1.27) = 66.40, p b .001, η2 = .71 (see Fig. 5a).

3.2.2. Heart rate
HR decreased linearly: F(3.81) = 5.02, p = .007, η2 = .16, ε =

.75; Flinear(1.27) = 7.78, p b .01, η2 = .22 (see Fig. 5b).

3.2.3. T-wave amplitude
TWA rapidly increased and then stabilised or decreased slightly:

F(3.81) = 6.97, p b .001, η2 = .21, ε = .83; polynomial contrast:
Flinear(1.27) = 5.58, p = .026, η2 = .17; Fquadratic(1.27) = 19.36,
p b .001, η2 = .42 (see Fig. 5c).

3.2.4. HRV parameters

3.2.4.1. HF ln. An interaction between GROUP and CONDITION showed
that the Forest S+ group responded with increased HF magnitude
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during recovery; the Forest S− group responded with decreased HF
magnitude; and the control group had about the same HF magnitude
during recovery: F(6.81) = 3.30, p = .008, η2 = .20, ε = .89;
Flinear(2.27) = 7.39, p = .003, η2 = .35 (see Fig. 7). Bonferroni
post hoc analyses showed that the Forest S+ group had higher
HF magnitude than the Forest S− group at the third and the
fourth recovery period, p = .037 respective p = .020.

For the other HRV parameters no significant effect were found
(Fig. 6a–f).

3.2.5. State anxiety scale
The participants rated their subjective state anxiety higher

during stress than during baseline (M = 50.2, SD = 11.5 and
M = 29.7, SD = 6.6, respectively), t(26) = 10.6, p b .001, indicat-
ing that stress induction was successful. Responses to STAI were
missing from three participants.

There was no significant difference in state anxiety during expo-
sure to the green environment between the group that also received
the auditory stimuli (M = 30.8, SD = 7.5) and the group that did
not (M = 27.1, SD = 4.4), t(15) = 1.24, n.s.

4. Discussion and conclusions

We have found that stress recovery can be facilitated by the
addition of sounds of nature to a virtual green environment in a
laboratory setting. Replicating two prior studies on VR-TSST HR,
cortisol, and subjective ratings of state anxiety increased, and
TWA decreased (i.e. increased sympathetic activity), indicating
that stress induction was successful. In addition, LF nu and LF/HF,
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both suggested to be related to sympathetic cardiac regulation,
increased. However, LF nu and LF/HF didn't return to baseline
during recovery, possibly reflecting influences of parasympathetic
nervous system (PNS) activity supposed to be involved also in the
LF frequency band [40].

Concerning recovery, HF ln, generally considered being a proxy of
vagally mediated respiratory sinus arrhythmia increased for the
group that after TSST were exposed to a virtual forest with congruent
nature sounds. The control group that recovered without any visual
or auditory stimuli showed about the same HF ln magnitude as
during TSST, and neither did we detect any significant effect on stress
recovery in the silent green environment.

Thus, our hypothesis was only partly confirmed. Stress recovery
seemed to be facilitated for the group that recovered in the setting
with both visual and auditory nature stimuli as indicated by increas-
ing PNS cardiac regulation. However, in contrast to our intention the
silent forest may have created a component of uncertainty or un-
pleasantness. Some of the participants, who recovered in the silent
forest mentioned that they had experienced some kind of anticipa-
tion fear, expecting something threatening or dangerous to appear
from the surrounding VR nature. The incongruent situation of a
high visual realism with no other modality exposure might produce
an almost surrealistic experience that may be perceived as some-
what frightening.

In contrast to our results, another recent study showed faster
recovery of the sympathetic nervous system during exposure to
sounds of nature, but no significant effect on the parasympathetic
nervous system [27]. That study was concerned with recovery after
psychological stress induced by an arithmetic task, and did not
include any visual stimuli, suggesting there may be an interactive
effect between visual VR nature and sound exposure that has a
parasympathetic consequence during recovery. The addition of
sound exposure to the visual nature stimuli may act by enhancing
the feeling of reality in the virtual setting, hence increasing the
recovery effect. Another possible explanation may be that nature
sounds itself heighten parasympathetic activity.

The lack of effect on cortisol response may reflect the inertness
of this system. The reaction of cortisol is generally slow and difficult
to affect in any measurable way by adjustment of the recovery envi-
ronment. The TSST elicits a prompt and high stress-related cortisol
response. Those bodily responses connected to the feeling of relief
in quitting the stressful task may disguise any slight differences in
the eventual recovery response.

Besides from the small sample size this study has several other
limitations. An additional control group with only auditory recov-
ery would have increased the interpretational value, and should
be explored through further developed study protocols in response
to this initial pilot study. Although inclusion of only men helps
standardising the results it also restricts generalisability. While
replicating the findings of adequate TWA-responses to stress and
stress recovery from previous studies in the VR-laboratory, it should
be mentioned that TWA as a measure of sympathetic cardiac activ-
ity is not uncontroversial and must be interpreted with caution.
Another problem was the inevitable window in the recordings,
due to set up time for VR setting number two (nature) after the ini-
tial VR setting (TSST). This delayed the onset of the recovery condition
being studied by approximately 5 min for every participant, however
the delay was the same in all three groups.

Further explorations of the use of virtual nature could be achieved
by alternative study protocols. Other sounds, or even other modalities
such as smell or touch, might be tried. Participants could initially rest
in varied VR environmental settings (e.g. with or without sound),
with stress later being induced by VR-TSST to examine a potential
preventive role of nature experiences on stress. Considering the rela-
tively slow cortisol reaction, this set-up might have a larger potential
to elicit interpretable responses or non-responses. It would also be of
interest to study the effects in an even more realistic VR-nature, using
for example modern game engines with capacity for photorealistic
animated environments.

To summarize, the findings of this pilot study at least partly give
preliminary but positive support for the potential of nature VE. There
seems to be a significant interactive effect between sound modality and
visual input in the virtual nature setting, contributing to increased para-
sympathetic activity and more efficient recovery after virtually-induced
stress. Consequently, this discovery of an activationmechanismoperative
in the case of stress recovery suggests novel interpretations of howhealth
effects in nature are achieved. The findings offer prospects for a new
research strategy in the complex field of interactions between humans
and nature. By standardising natural settings, applying different modali-
ties, and using varied measurement techniques and variables within the
laboratory, a more fundamental understanding of the mechanisms and
pathways for this interaction may be achieved.
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